Uncertainity Adapatation in Robot Perception and Learning

نویسندگان

  • Jimmy Jin
  • Kris Kitani
چکیده

Dealing with uncertainty is a fundamental challenge for building any practical robot platform. In fact, the ability to adapt and react to uncertain scenarios is an essential sign of an intelligent agent. Furthermore, uncertainty can arise from every component of a robotic system. Inaccurate motion models, sensory noises, and even human factors are all common sources of the unexpected. From an algorithmic perspective, handling uncertainty in robotics introduces a new layer of difficulty because the algorithm not only needs to be accurate in a single scenario but also need to adapt to the changes in uncertainties as the environment shifts. This thesis presents methods for adapting to uncertainties in two tasks: object pose estimation and assistive navigation. For object pose estimation, we present a sensor fusion method that is highly robust in estimating the pose of fiducial tags. The method leverages the different structural and sensory advantages of RGB and Depth sensors to joint-optimize the Perspective-N-Point problem and obtains the pose. The key insight being adaptively bounding the optimization region by testing the pose solution uncertainty. For assistive navigation, we wish to tackle the problem of using active signaling to avoid pedestrians while it is minimally invasive to other people. We formulate the problem as a bandit with expert advice problem with reinforcement learning policies as the experts. We present an online learning algorithm which can continuously adapt to new and uncertain pedestrian types by using an online policy search technique and the Dirichlet Process. November 30, 2017 DRAFT

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamic Obstacle Avoidance by Distributed Algorithm based on Reinforcement Learning (RESEARCH NOTE)

In this paper we focus on the application of reinforcement learning to obstacle avoidance in dynamic Environments in wireless sensor networks. A distributed algorithm based on reinforcement learning is developed for sensor networks to guide mobile robot through the dynamic obstacles. The sensor network models the danger of the area under coverage as obstacles, and has the property of adoption o...

متن کامل

A Q-learning Based Continuous Tuning of Fuzzy Wall Tracking

A simple easy to implement algorithm is proposed to address wall tracking task of an autonomous robot. The robot should navigate in unknown environments, find the nearest wall, and track it solely based on locally sensed data. The proposed method benefits from coupling fuzzy logic and Q-learning to meet requirements of autonomous navigations. Fuzzy if-then rules provide a reliable decision maki...

متن کامل

A Robotic Set-up with Remote Access for “pick and Place” Operations under Uncertainity Conditions

The work describes on-going work at the University of Pisa on the field of tele-laboratories and distance learning. In particular, the group is working at the evolution of existing tele-laboratory experiments in the field of robotics and control into learning units of a self-consistent didactic project. The pick-andplace system described has been designed to provide the set-up for robot arm mot...

متن کامل

بهبود یادگیری رفتار روبات سیار دارای خطا در سنسورهای آن با استفاده از شبکه بیزین

In this paper a new structure based on Bayesian networks is presented to improve mobile robot behavior, in which there exist faulty robot sensors. If a robot likes to follow certain behavior in the environment to reach its goal, it must be capable of making inference and mapping based on prior knowledge and also should be capable of understanding its reactions on the environment over time. Old ...

متن کامل

Navigation of a Mobile Robot Using Virtual Potential Field and Artificial Neural Network

Mobile robot navigation is one of the basic problems in robotics. In this paper, a new approach is proposed for autonomous mobile robot navigation in an unknown environment. The proposed approach is based on learning virtual parallel paths that propel the mobile robot toward the track using a multi-layer, feed-forward neural network. For training, a human operator navigates the mobile robot in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017